Hybrid RecSys using Probabilistic Graphical Model

Tuhin Sharma Impel Labs tuhinsharma121@gmail.com

- Why Hybrid RecSys?
- What is PGM?
- Our Approach.
- Implementation.
- Future Scope.

New Visitor III Subarray rates

Why Hybrid Recommender System?

Content Based

- No scope of serendipity
- Over-specialization
- Does not use the interaction information between users

Collaborative Filtering

- Content is *unpopular*.
- Cold start problem.

What is PGM?

Probabilistic Graphical Model

(PGM) expresses the conditional dependency structure between random variables.

Probabilistic Graphical Model

Why we need PGM?

- Latent similarity and dependency between genres/categories.
- Easy to explain recommendation.
- Handles cold-start problem.
- Easy to add new items/contents.

Approach

• Unweighted dependency graph (UDG)

- LDA (Latent Dirichlet Allocation)
- Content Based

Probabilistic Graphical Model

- Co-occurrence Matrix
- Bayesian Network
- Collaborative Based

Unweighted dependency graph (UDG)

UDG and PGM (Approach contd.)

Explicit Connections

Real Life example

Implementation

- Vertically Scalable
 - Pgmpy
 - Pymc
 - Libpgm
 - Pomegranate

- Horizontally Scalable
 - Edward on Tensorflow.
 - Pymc3 on Theano

Available at https://github.com/tuhinsharma/recsys-pgm/blob/master/hybrid-pgm-recsys.ipynb

Performance of Pomegranate

content count (number of nodes in PGM)	Number of user viewership	Model Size	Training Time	Prediction Time
20K	5K	18.3 MB	508 sec	4 sec
30K	5K	27.4 MB	749 sec	9 sec
40K	5K	36.6 MB	1049 sec	16 sec
50K	5K	45.8 MB	1347 sec	26 sec
200K	5K	183.4 MB	5833 sec / 1.6 hrs	~2 min
300K	5K	274.4 MB	10732 sec / 2.9 hrs	~3 min
400K	5K	366.5 MB	18901 sec / 5.3 hrs	~5 min

CPU – 8, Memory – 16 GB

- Size of CPT for node *n* with *m* number of parents is 2^{m-1} .
 - Ontology creation should be *smart* enough.
- DAG (Directed Acyclic Graph)
 - Bayesian Belief Propagation. (pomegranate)
- Scalability
 - Variational inference. (edward)

Thank You

Tuhin Sharma Impel Labs tuhinsharma121@gmail.com